Home
Class 12
MATHS
|[omega+omega^(2),1,omega],[omega^(2)+1,...

`|[omega+omega^(2),1,omega],[omega^(2)+1,omega^(2),1],[1+omega,omega,omega^(2)]|`

Promotional Banner

Similar Questions

Explore conceptually related problems

{[(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)] + [(omega,omega^(2),1),(omega^(2),1,omega),(omega,omega^(2),1)]} [(1),(omega),(omega^(2))]

If omega is a complex cube root of unity,show that ([1 omega omega^(2)omega omega^(2)1 omega^(2)1 omega]+[omega omega^(2)1 omega^(2)1 omega omega omega^(2)1])[1 omega omega^(2)]=[000]

det [[1, omega, omega^(2) omega, omega^(2), 1omega^(2), 1, omega]]

det [[1, omega, omega^(2) omega, omega^(2), 1omega^(2), 1, omega]] =

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

|[1,omega,omega^2] , [omega, omega^2,1] , [omega^2,1,omega]|=0

Let omega!=1 be a cube root of unit and Delta=|(1-omega-omega^(2),2,2),(2omega, omega-omega^(2)-1,2omega),(2omega^(2),2omega^(2),omega^(2)-1-omega)| then Delta equals