Home
Class 11
MATHS
Orthocentre of the triangle with vertice...

Orthocentre of the triangle with vertices `(sqrt3,sqrt10),(sqrt7,sqrt6),(sqrt5,sqrt8)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Orthocentre of the triangle with vertices (sqrt(3),sqrt(10)),(sqrt(7),sqrt(6)),(sqrt(5),sqrt(8)) is

(sqrt7-sqrt5)/(sqrt7+sqrt5)

The incentre of a triangle with vertices (7,1),(-1,5) and (3+2sqrt(3),3+4sqrt(3)) is

The orthocentre of a trianlge whose vertices are (0,0) , (sqrt3,0) and (0,sqrt6) is

If the vertices of a triangle are (sqrt(5),0) ,sqrt(3),sqrt(2)), and (2,1), then the orthocentre of the triangle is (sqrt(5),0) (b) (0,0)(sqrt(5)+sqrt(3)+2,sqrt(2)+1)( d) none of these

(sqrt7-sqrt6)/(sqrt7+sqrt6)-(sqrt7+sqrt6)/(sqrt7-sqrt6)=

The value of the determinant Delta=|(sqrt(13)+sqrt3,2sqrt5,sqrt5),(sqrt(15)+sqrt(26),5,sqrt(10)),(3+sqrt(65),sqrt(15),5)| is equal to

(sqrt(3)-sqrt(5))(sqrt(3)+sqrt(5))/(sqrt(7)-2sqrt(5))

Value of 1/sqrt(11-2sqrt30)-3/sqrt(7-2sqrt10)-4/(sqrt(8+4sqrt3)) is

Which among the following is greatest sqrt(7)+sqrt(3),sqrt(5)+sqrt(5),sqrt(6)+2?