Home
Class 11
MATHS
If x^(log(3)x)=9, then x can be...

If `x^(log_(3)x)=9,` then `x` can be

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(x)(2+x)<=log_(x)(6-x) then x can be

If 3^(log_(9)x)=2 , then x = ______.

If log_(3)x-(log_(3)x)^(2)le(3)/(2)log_((1//2sqrt(2)))4 , then x can belong to

If "log"_(3) x + "log"_(9)x^(2) + "log"_(27)x^(3) = 9 , then x =

The equation x^(log_(3)x)=9 has

4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83), then x is equal to

If log_(3) ( 3 + x) + log_(3) (8 - x) - log_(3) ( 9x - 8) = 2 - log_(3) 9, then x =

Let x satisfies the equation log_(3)(log_(9)x)=log_(9)(log_(3)x) then the product of the digits in x is