Home
Class 11
MATHS
If y=tan^-1 x , then (1+x^2)y2+2xy1= (a...

If `y=tan^-1 x` , then `(1+x^2)y_2+2xy_1=` (a) y (b) 0 (c) 1 (d) 2

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = tan^(-1) x, prove that (1 + x^2)y_2 + 2xy_1 = 0

If logy=tan^(-1)x , show that (1+x^2)y_2+(2x-1)y_1=0 .

If y=e^(acos^-1x) , then show that (1-x^2)y_2-xy_1-a^2y=0

If y =(sin^(-1) x)^2 , prove that (1-x^2)y_2 - xy_1 - 2 = 0

If y=[sin^-1 x]^2 , then prove that : (1 -x^2) y_2-xy_1 - 2 = 0 .

If y=(sin^(-1)x)^2,\ then (1-x^2)y_2 is equal to x y_1+2 (b) x y_1-2 (c) x y_1+2 (d) none of these

If y = Tan ^(-)x then show that (1 + x ^(2)) y _(2) + 2xy _(1) = 0

If y= tan^-1 x then prove that (1+x^2) y_(2) + 2xy_(1) =0. Differentiate sec^-1(1/(2x^2 -1)) with respect to sqrt 1-x^2 .

If y=(sin^(-1)x)^(2), then (1-x^(2))y_(2) is equal to xy_(1)+2(b)xy_(1)-2(c)xy_(1)+2(d) none of these

If y=e^x , Prove that , xy_2-(2x-1)y_1+(x-1)y=0 .