Home
Class 12
MATHS
For x in (0,(3)/(2)), " let " f(x)=sqrt(...

For `x in (0,(3)/(2)), " let " f(x)=sqrt(x),g(x) =tan x and h(x)=(1-x^(2))/(1+x^(2))`.
If `phi(x)=((hof)og)(x), " then " phi ((pi)/(3))` is equal to

A

` "tan"(pi)/(12)`

B

` "tan"(11pi)/(12)`

C

` "tan"(7pi)/(12)`

D

` "tan"(5pi)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \phi\left(\frac{\pi}{3}\right) \) where \( \phi(x) = (h \circ f \circ g)(x) \). Let's break this down step by step. ### Step 1: Define the Functions We have three functions defined as follows: - \( f(x) = \sqrt{x} \) - \( g(x) = \tan(x) \) - \( h(x) = \frac{1 - x^2}{1 + x^2} \) ### Step 2: Find \( g\left(\frac{\pi}{3}\right) \) First, we need to calculate \( g\left(\frac{\pi}{3}\right) \): \[ g\left(\frac{\pi}{3}\right) = \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \] ### Step 3: Find \( f(g\left(\frac{\pi}{3}\right)) \) Next, we find \( f(g\left(\frac{\pi}{3}\right)) = f(\sqrt{3}) \): \[ f(\sqrt{3}) = \sqrt{\sqrt{3}} = 3^{1/4} = \sqrt[4]{3} \] ### Step 4: Find \( h(f(g\left(\frac{\pi}{3}\right))) \) Now, we need to calculate \( h(f(g\left(\frac{\pi}{3}\right))) = h(\sqrt[4]{3}) \): \[ h(\sqrt[4]{3}) = \frac{1 - (\sqrt[4]{3})^2}{1 + (\sqrt[4]{3})^2} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}} \] ### Step 5: Simplify \( h(\sqrt[4]{3}) \) To simplify \( \frac{1 - \sqrt{3}}{1 + \sqrt{3}} \), we can multiply the numerator and the denominator by the conjugate of the denominator: \[ h(\sqrt[4]{3}) = \frac{(1 - \sqrt{3})(1 - \sqrt{3})}{(1 + \sqrt{3})(1 - \sqrt{3})} = \frac{(1 - \sqrt{3})^2}{1 - 3} = \frac{1 - 2\sqrt{3} + 3}{-2} = \frac{4 - 2\sqrt{3}}{-2} \] \[ = -2 + \sqrt{3} \] ### Final Answer Thus, the value of \( \phi\left(\frac{\pi}{3}\right) \) is: \[ \phi\left(\frac{\pi}{3}\right) = -2 + \sqrt{3} \]

To solve the problem, we need to find the value of \( \phi\left(\frac{\pi}{3}\right) \) where \( \phi(x) = (h \circ f \circ g)(x) \). Let's break this down step by step. ### Step 1: Define the Functions We have three functions defined as follows: - \( f(x) = \sqrt{x} \) - \( g(x) = \tan(x) \) - \( h(x) = \frac{1 - x^2}{1 + x^2} \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x)=tan x,g(x)=sqrt(x),h(x)=(1-x^(2))/(1+x^(2)) and phi(x)=(ho(gof))(x), then phi((pi)/(3)) is equal to

If phi(x)=a^(x), then [phi(p)]^(3) is equal to:

Let f(x)=sinx,g(x)=2x" and "h(x)=cosx. If phi(x)=["go"(fh)](x)," then "phi''((pi)/(4)) is equal to

Let f and g be two differentiable functins such that: f (x)=g '(1) sin x+ (g'' (2) -1) x g (x) = x^(2) -f'((pi)/(2)) x+ f'(-(pi)/(2)) If phi (x) =f ^(-1) (x) then phi'((pi)/(2) +1) equals to :

If phi(x)=int(phi(x))^(-2)dx and phi(1)=0 then phi(x) is

If phi(x)=phi'(x) and phi(1)=2, then phi(3) equals

If phi(x)=2cos^(-1)((2)/(sqrt(x)))+sin^(-1)((4sqrt(x-4))/(x)), then phi'(9) is equal to

If f(x)=(x+1)/x and phi(x)=(x^4+1)/(x^4) then phi(a)=__-- where f(a)=5.