Home
Class 12
MATHS
If f(x)=log(e)((1-x)/(1+x)),|x| lt 1, " ...

If `f(x)=log_(e)((1-x)/(1+x)),|x| lt 1, " then " f((2x)/(1+x^(2)))` is equal to

A

`2f(x)`

B

`2f(x^(2))`

C

`(f(x))^(2)`

D

`-2f(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( f\left(\frac{2x}{1+x^2}\right) \) given that \( f(x) = \log_e\left(\frac{1-x}{1+x}\right) \) and \( |x| < 1 \). ### Step-by-Step Solution: 1. **Substitute \( \frac{2x}{1+x^2} \) into \( f(x) \)**: \[ f\left(\frac{2x}{1+x^2}\right) = \log_e\left(\frac{1 - \frac{2x}{1+x^2}}{1 + \frac{2x}{1+x^2}}\right) \] 2. **Simplify the numerator**: \[ 1 - \frac{2x}{1+x^2} = \frac{(1+x^2) - 2x}{1+x^2} = \frac{1 + x^2 - 2x}{1+x^2} = \frac{(1 - x)^2}{1+x^2} \] 3. **Simplify the denominator**: \[ 1 + \frac{2x}{1+x^2} = \frac{(1+x^2) + 2x}{1+x^2} = \frac{1 + x^2 + 2x}{1+x^2} = \frac{(1 + x)^2}{1+x^2} \] 4. **Combine the results**: \[ f\left(\frac{2x}{1+x^2}\right) = \log_e\left(\frac{\frac{(1-x)^2}{1+x^2}}{\frac{(1+x)^2}{1+x^2}}\right) = \log_e\left(\frac{(1-x)^2}{(1+x)^2}\right) \] 5. **Use properties of logarithms**: \[ f\left(\frac{2x}{1+x^2}\right) = \log_e\left((1-x)^2\right) - \log_e\left((1+x)^2\right) = 2\log_e(1-x) - 2\log_e(1+x) \] 6. **Factor out the common term**: \[ f\left(\frac{2x}{1+x^2}\right) = 2\left(\log_e(1-x) - \log_e(1+x)\right) \] 7. **Recognize the function**: \[ \log_e(1-x) - \log_e(1+x) = \log_e\left(\frac{1-x}{1+x}\right) = f(x) \] 8. **Final result**: \[ f\left(\frac{2x}{1+x^2}\right) = 2f(x) \] ### Conclusion: Thus, the final answer is: \[ f\left(\frac{2x}{1+x^2}\right) = 2f(x) \]

To solve the problem, we need to evaluate \( f\left(\frac{2x}{1+x^2}\right) \) given that \( f(x) = \log_e\left(\frac{1-x}{1+x}\right) \) and \( |x| < 1 \). ### Step-by-Step Solution: 1. **Substitute \( \frac{2x}{1+x^2} \) into \( f(x) \)**: \[ f\left(\frac{2x}{1+x^2}\right) = \log_e\left(\frac{1 - \frac{2x}{1+x^2}}{1 + \frac{2x}{1+x^2}}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    IIT JEE PREVIOUS YEAR|Exercise TYPES OF FUNCTION|19 Videos
  • FUNCTIONS

    IIT JEE PREVIOUS YEAR|Exercise INVERSE AND PERIODIC FUNCTIONS|11 Videos
  • FUNCTIONS

    IIT JEE PREVIOUS YEAR|Exercise INVERSE AND PERIODIC FUNCTIONS|11 Videos
  • ELLIPSE

    IIT JEE PREVIOUS YEAR|Exercise EQUATION OF CHORD OF CONTACT, CHORD BISECTED AT A GIVEN POINT & DIAMETER|3 Videos
  • HYPERBOLA

    IIT JEE PREVIOUS YEAR|Exercise EQUATION OF CHORD OF CONTACT,CHORD BISECTED DIAMETER,ASYMPTOTE AND RECTENGULAR HYPERBOLA|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)=log_(e)((1-x)/(1+x)),|x|<1, then f((2x)/(1+x^(2))) is equal to:

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x)=log((1+x)/(1-x)) , "then f "((2x)/(1+x^(2))) is equal to

if f(x)=log_(2)((1-x)/(1+x)) then f((2x)/(1+x^(2))) is equal to (A) f(x) (B) 2f(x) (C) -2f(x) (D) (f(x))^(2)

If f(x) = log ((1+x)/(1-x)) , then f((2x)/(1+x^(2))) is equal to

If f(x)=log((1-x)/(1+x)) ,|x|<1" and f((2x)/(1+x^(2)))=K .f(x) then 50K=

If f(x)="log"(1+x)/(1-x) , then prove that: f((2x)/(1+x^(2)))=2f(x)

If log_(4)((2f(x))/(1-f(x)))=x, " then "(f(2010)+f(-2009)) is equal to

IIT JEE PREVIOUS YEAR-FUNCTIONS-COMPOSITE OF FUNCTIONS
  1. For x in (0,(3)/(2)), " let " f(x)=sqrt(x),g(x) =tan x and h(x)=(1-x^(...

    Text Solution

    |

  2. Let f(x)=x^(2), x in R. " for any " A subset eq R, define g(A)={x in ...

    Text Solution

    |

  3. Let sum(k=1)^(10)f(a+k)=16(2^(10)-1), where the function f satisfies ...

    Text Solution

    |

  4. If f(x)=log(e)((1-x)/(1+x)),|x| lt 1, " then " f((2x)/(1+x^(2))) is e...

    Text Solution

    |

  5. For x in R-{0,1}, " let " f(1)(x)=(1)/(x), f(2)(x)=1-x and f(3)(x)=(1)...

    Text Solution

    |

  6. Let a,b,c in R. " If " f(x) =ax^(2)+bx+c be such that a+b+c=3 and f(x+...

    Text Solution

    |

  7. Let f(x)=x^2 and g(x)=sinx for all x in Rdot Then the set of all x sa...

    Text Solution

    |

  8. Let f(x)=(alpha x)/(x+1), x ne -1. Then, for what value of alpha " is ...

    Text Solution

    |

  9. Let g(x)=1+x-[x] and f(x)={(-1",",x lt 0),(0",",x=0),(1",",x gt 0):}, ...

    Text Solution

    |

  10. If g(f(x))=|sinx| and f(g(x))=(sin(sqrtx))^2 then

    Text Solution

    |

  11. If f(x)=cos(log x), " then " f(x)*f(y)-(1)/(2)[f((x)/(y))+f(xy)] has t...

    Text Solution

    |

  12. Let f(x0=|x-1|dot Then f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) f(|x|)-|...

    Text Solution

    |

  13. Let f(x)=sin[pi/6sin(pi/2sinx)] for all x in RR

    Text Solution

    |

  14. If f(x)=cos[pi^2]x , where [x] stands for the greatest integer functio...

    Text Solution

    |

  15. Let g(x) be a function defined on[-1,1]dot If the area of the equilate...

    Text Solution

    |

  16. If y=f(x)=((x+2))/((x-1)),t h e n x=f(y) (b) f(1)=3 y increases wit...

    Text Solution

    |

  17. If f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+pi/3) and g(5/4)=1, then (gof)...

    Text Solution

    |

  18. if f(x)=(a-x^n)^(1/n), where a &gt; 0 and n is a positive integer, the...

    Text Solution

    |

  19. The natural number a for which sum(k=1,n) f(a+k)=16(2^n-1) where the f...

    Text Solution

    |