Home
Class 12
MATHS
Consider the function f:(-oo, oo) -> (-...

Consider the function `f:(-oo, oo) -> (-oo ,oo)` defined by `f(x) =(x^2 - ax + 1)/(x^2+ax+1) ;0 lt a lt 2`. which of the following is true ?

A

` ( 2 + a )^(2) f '' (1) + ( 2- a ) ^(2) f'' ( - 1 ) = 0 `

B

` ( 2 - a ) ^(2) f '' (1) - ( 2 + a ) ^(2) f '' ( - 1 ) = 0 `

C

` f ' (1) f' (-1) = - ( 2 + a ) ^(2)`

D

`f ' (1) f ' (-1) = - ( 2 + a ) ^(2)`

Text Solution

Verified by Experts

The correct Answer is:
a

`f (x) = ((x^(2) + ax + 1) - 2 ax ) /(x^(2) + ax + 1) =1- (2ax)/(x ^(2) + a x + 1)`
`f' (x) = - [((x ^(2) + ax + 1) * 2a - 2 ax ( 2x + a))/( ( x^(2) + ax + a ) ^(2)) ] `
`" " = [ (- 2ax ^(2) + 2a )/((x ^(2) + ax + a ) ^(2)) ] = 2a [ ((x^(2) - 1))/( (x ^(2) + ax + 1)^(2)) ] ` ... (i)
` f'' (x) = 2 a [ ((x^(2) + a x + 1) ^(2) ( 2x) - 2 ( x^(2) - 1) (x ^(2) + a x + 1) ( 2x + a))/( (x ^(2) + ax + 1) ^(4)) ]`
` " " = 2a [ (2x ( x^(2) + a x + 1 ) - 2 (x^(2) - 1) ( 2x + a))/( (x^(2) + ax + 1) ^(3)) ] ` ... (ii)
Now, ` f'' (1) = ( 4 a (a + 2)) /( (a + 2) ^(3)) = ( 4 a ) /( ( a + 2) ^(3)) `
and ` f '' (-1) = ( 4a (a - 2 ) )/( ( 2- a ) ^(3)) = (- 4a )/( (a -2) ^(2))`
`therefore ( 2+ a ) ^(2) f '' (1) + ( 2 -a ) ^(2) f'' ( - 1) = 4a - 4a = 0 `
Promotional Banner

Similar Questions

Explore conceptually related problems

f:(-oo,oo)rarr(-oo,oo) defined by f(x)=|x| is

Consider the function f:(-oo,oo)rarr(-oo,oo) defined by f(x)=(x^(2)-ax+1)/(x^(2)+ax+1);0

f:(-oo,oo)rarr(-oo,oo) defined by f(x)=x^(3)

Consider the function f(-oo,oo)rarr(-oo,oo) defined by f(x)=(x^(2)-a)/(x^(2)+a), agt0 which of the following is not true?

Consider the function f:(-oo,oo)rarr(-oo,oo) defined by f(x)=(x^2-ax+1)/(x^2+ax+1), 0ltalt2 , and let g(x)=int_0^(e^x) (f\'(t)dt)/(1+t^2) . Which of the following is true? (A) g\'(x) is positive on (-oo,0) and negative on (0,oo) (B) g\'(x) is negative on (-oo,0) and positive on (0,oo) (C) g\'(x) changes sign on both (-oo,0) and (0,oo) (D) g\'(x) does not change sign on (-oo,oo)

The function f : [0,oo)to[0,oo) defined by f(x)=(2x)/(1+2x) is

f:(0,oo)rarr(0,oo) defined by f(x)=x^(2) is

Consider the function f:(-oo,oo)vec(-oo,oo) defined by f(x)=(x^2+a)/(x^2+a),a >0, which of the following is not true? maximum value of f is not attained even though f is bounded. f(x) is increasing on (0,oo) and has minimum at ,=0 f(x) is decreasing on (-oo,0) and has minimum at x=0. f(x) is increasing on (-oo,oo) and has neither a local maximum nor a local minimum at x=0.