Home
Class 11
MATHS
अनुक्रम निम्नलिखित रूप में परिभाषित है t...

अनुक्रम निम्नलिखित रूप में परिभाषित है `t_(1)=t_(2)=1,t_(n)=t_(n-1)+t_(n-2),(ngt2)" यदि "_(n+1)=kt_(n)` n=1, 2, 3 तथा 4 के लिए k का मान निकाले।

Promotional Banner

Similar Questions

Explore conceptually related problems

If t_(n)=(1+(-2)^(n))/(n-1) , find t_(6)-t_(5)

The Fibonacci sequence is defence by t_(1)=t_(2)=1,t_(n)=t_(n-1)+t_(n-2)(n>2). If t_(n+1)=kt_(n) then find the values of k for n=1,2,3 and 4.

The sum S_(n) where T_(n) = (-1)^(n) (n^(2) + n +1)/( n!) is

The sum S_(n) where T_(n) = (-1)^(n) (n^(2) + n +1)/( n!) is

Find as indicated in the following case : t_(1)=1,t_(n)=2t_(n-1),(ngt 1) ,t_(6) .

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .

The 5th terms of the sequence defined by t_(1)=2,t_(2)=3 and t_(n)=t_(n-1)+t_(n-2) for nge3