Home
Class 12
MATHS
" (d) "(1)/(sqrt(3-(x^(2))/(4)))...

" (d) "(1)/(sqrt(3-(x^(2))/(4)))

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)[cos^(-1)(x sqrt(x)-sqrt((1-x)(1-x^(2))))]=(1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(-1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))+(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))0 b.1/4c.-1/4d none of these

Differentiate cos^(-1)(4x^(3)-3x) with respect to tan^(-1)((sqrt(1-x^(2)))/(x)), if 1/2

sqrt((4)/(3))-sqrt((3)/(4))=?(4sqrt(3))/(6) (b) (1)/(2sqrt(3))(c)1(d)-(1)/(2sqrt(3))

Differentiate w.r.t.x, the following functions : sqrt(3x+2)+(1)/(sqrt(2x^(2)+4)) .

Differentiate w.r.t.x, the following functions : sqrt(3x+2)+(1)/(sqrt(2x^(2)+4)) .

Differentiate w.r.t.x, the following functions : sqrt(3x+2)+(1)/(sqrt(2x^(2)+4)) .

The value of lim_(x rarr2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is (1)/(8sqrt(3))(b)(1)/(4sqrt(3)) (c) 0 (d) none of these

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C