Home
Class 12
MATHS
[" If "(1+x)^(n)=sum(r=0)^(n)^(n)C(r)x^(...

[" If "(1+x)^(n)=sum_(r=0)^(n)^(n)C_(r)x^(r)," then "],[^(n)C_(0)+(^(n)C_(1))/(2)+...(^(n)C_(n))/(n+1)" is "],[[" (a) "(2^(n)-1)/(n)," (b) "(2^(n+1)-1)/(n+1)" (c) "(2^(n)-1)/(n+1)," (d) "(2^(n)+1)/(n+1)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r) then prove that C_(0)+(C_(1))/(2)+......+(C_(n))/(n+1)=2

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r), then prove that C_(1)+2c_(2)+3C_(1)+...+nC_(n)=n2^(n-1)...

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r) then prove that C_(1)+2C_(2)+3C_(3)+....+nC_(n)=n2^(n-1)

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r), show that (C_(0))/(2)+(C_(1))/(3)+(C_(2))/(4)+...+(C_(n))/(n+2)=(n*2^(n+1)+1)/((n+1)(n+2))

If (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r),(1 + (C_(1))/(C_(0))) (1 + (C_(2))/(C_(1)))...(1 + (C_(n))/(C_(n-1))) is equal to

If (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r),(1 + (C_(1))/(C_(0))) (1 + (C_(2))/(C_(1)))...(1 + (C_(n))/(C_(n-1))) is equal to

If (1+x)^(n)=sum_(r=0)^(prime)nC_(r), show that C_(0)+(C_(1))/(2)++(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)

If (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r),(1 + (C_(0))/(C_(1))) (1 + (C_(2))/(C_(1)))...(1 + (C_(n))/(C_(n-1))) is equal to