Home
Class 10
MATHS
Prove that (tantheta+Sectheta+1)/(-tanth...

Prove that `(tantheta+Sectheta+1)/(-tantheta+Sectheta+1)=(Costheta)/(1-Sintheta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (tantheta +sectheta -1)/(tantheta-sectheta+1)=(1+sintheta)/costheta

Prove that : (sectheta+tantheta-1)/(tantheta-sectheta+1)=(costheta)/(1-sintheta)

prove (tantheta +sectheta-1)/(tantheta-sectheta+1) = (1+sintheta)/(costheta)

Prove tantheta/(sectheta-1)+(tantheta)/(sectheta+1)=2cosectheta .

Prove that (tantheta+sintheta)/(tantheta-sintheta)=(sectheta+1)/(sectheta-1) .

Prove the following identities: (tantheta+sectheta-1)/(tantheta-sectheta+1)=(1+sintheta)/(costheta)

Prove that (costheta)/(sectheta-tantheta)=1+sintheta .

Prove that (sintheta-costheta+1)/(sintheta+costheta-1)=1/(sectheta-tantheta) , using the identity sec^2theta=1+tan^2theta

Prove that: (sintheta-costheta+1)/(sintheta+costheta-1)=1/(sectheta-tantheta)

Prove the following (tantheta+sectheta-1) /(tantheta-sectheta+1) =(1+sintheta) /costheta