Home
Class 11
MATHS
Prove that n ! (n + 2) =n! +(n + 1) !...

Prove that `n ! (n + 2) =n! +(n + 1) !`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that n! + (n + 1)! = n! (n + 2)

Prove that ((2n)!) / (n!) = 2^n(2n - 1) (2n - 3) ... 5.3.1.

Prove that log_n(n + 1) > log_(n + 1) (n + 2) , for n > 1.

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

Prove that [n+1/2]^(n)>(n!)

If n ge 1 is a positive integer, then prove that 3^(n) ge 2^(n) + n . 6^((n - 1)/(2))

Prove that ((n + 1)/(2))^(n) gt n!

Prove that ((n + 1)/(2))^(n) gt n!

Prove that ((n + 1)/(2))^(n) gt n!