Home
Class 11
MATHS
[e^(x))],[" 14."(1)/((x^(2)+1)(x^(2)+4))...

[e^(x))],[" 14."(1)/((x^(2)+1)(x^(2)+4))]

Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(x^(4))(x+x^(3)+2x^(5))e^(x^(2))*dx is equal to a.(1)/(2)xe^(x^(2))e^(x^(4))+c b.(1)/(2)x^(2)e^(x^(4))+c c.(1)/(2)e^(x^(2))e^(x^(4))+cd(1)/(2)x^(2)e^(x^(2))e^(x^(4))+c

int(e^(x))/(x^(4))dx=-(e^(x))/(3)[(1)/(x^(3))+(1)/(2x^(2))+(1)/(2x)]+(1)/(6)int(e^(x))/(x)dx

Prove that, int (e^(x))/(x^(4))dx=-(e^(x))/(3)[(1)/(x^(3))+(1)/(2x^(2))+(1)/(2x)]+(1)/(6)int (e^(x))/(x)dx .

int e^(x^(4))(x+x^(3)+2x^(5))e^(x^(2))dx is equal to (1)/(2)xe^(x^(2))e^(x^(4))+c( b) (1)/(2)x^(2)e^(x^(4))+c(1)/(2)e^(x^(2))e^(x^(4))+c(d)(1)/(2)x^(2)e^(x^(2))e^(x^(4))+c

(d)/(dx)[log{e^(x)((x-2)/(x+2))^(3/4)}] equals (x^(2)-1)/(x^(2)-4) (b) 1 (c) (x^(2)+1)/(x^(2)-4) (d) e^(x)(x^(2)-1)/(x^(2)-4)

int e^(x)((x^(4)+x^(2)+1)/(x^(2)+x+1))dx=

int (e ^ (2x)) / ((e ^ (x) -1) ^ ((1) / (4))) dx

int e^(ln(1+(1)/(x^(2))))*(x(x^(2)-1))/(x^(4)+1)dx=

e^(x-1-(1)/(2)(x-1)^(2)+(1)/(3)(x-1)^(3)-(1)/(4)(x-1)^(4))+... =

f(x) = ((e^(2x)-1)/(e^(2x)+1)) is