Home
Class 10
MATHS
7.(d^(4)y)/(dx^(4))={c+((dy)/(dx))^(2)}^...

7.(d^(4)y)/(dx^(4))={c+((dy)/(dx))^(2)}^(3/2)

Promotional Banner

Similar Questions

Explore conceptually related problems

(d^(4)y)/(dx^(4))=[1+((dy)/(dx))^(2)]^(3//2) . Find order and degree of differential equation.

Order and degree of the differential equation (d^(4)y)/(dx^(4))=(1+((dy)/(dx))^(2))^(3) respectively are

Find the order and degree (if defined) of the equation: (d^(2)y)/(dx^(2))={1+((dy)/(dx))^(4)}^((5)/(3))

find order and degree ((d^(2)y)/(dx^(2)))+((dy)/(dx))^(3)+y^(4)=0

(d^(2)x)/(dy^(2)) equals a. ((d^(2)y)/(dx^(2)))^(-1) b. -((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-3) c. ((d^(2)y)/(dx^(2)))((dy)/(dx))^(-2) d. -((d^(2)y)/(dx^(2)))((dy)/(dx))^(-3)

The order of the differential equation (d^(2)y)/(dx^(3)) + 2 ((dy)/(dx))^(4) + (dy)/(dx) = cos x is

The degree of the differential equation ((d^(2) y)/(dx^(2)))^(2) + (d^(2)y)/(dx^(2)) - ((dy)/(dx))^(4) + (dy)/(dx) + y = 6x^(3) is -