Home
Class 12
MATHS
" (iv) "cot^(-1)(1)/(2)(e^(x)-e^(-x))...

" (iv) "cot^(-1)(1)/(2)(e^(x)-e^(-x))

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)(e^(x))

int_(-log 3)^(log 3) cot^(-1) ((e^(x)-1)/(e^(x)+1))dx = ____

" (i) "int e^(cot^(-1)x)*(1)/(1+x^(2))dx

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .

If y=tan^(-1)((2)/(e^(-x)-e^(x)))" then "(1+e^(2x))y_(1)=

int(2e^(5x)+e^(4x)-4e^(3x)+4e^(2x)+2e^(x))/((e^(2x)+4)(e^(2x)-1)^(2))dx= a) "tan"^(-1)(e^(x))/(2)-(1)/(e^(2x)-1)+C b) "tan"^(-1)e^(x)-(1)/(2(e^(2x)-1))+C c) "tan"^(-1)(e^(x))/(2)-(1)/(2(e^(2x)-1))+C d) 1-"tan"^(-1)((e^(x))/(2))+(1)/(2(e^(2x)-1))+C

int(2)/((e^(x)+e^(-x))^(2))dx(e^(-x))/(e^(x)+e^(-x))+C(b)-(1)/(e^(x)+e^(-x))+C(c)(-1)/((e^(x)+1)^(2))+C(d)(1)/(e^(x)-e^(-x))+C

tan^(-1)((e^(2x)+1)/(e^(2x)-1))