Home
Class 12
MATHS
x=sint, y=cos 2t...

`x=sint, y=cos 2t`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x and y are connected parametrically by the equations given, without eliminating the parameter, Find (dy)/(dx) . x=sint , y=cos2t

Find (dy)/(dx),x=sint,y=cos2t

If x= sint, y= cos2t then prove that (dy)/(dx)= -4sint

If x=sint and y=cos2t , then (dy)/(dx) =

If x = sint , y = cos pt , then

If x=sint and y=cos pt, then

Consider the parametrically defined curve x(t)=1-sint,y=4-3cos t then the equation in cartesian form is given by.

If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable functions of x and if dx//dt ne 0 then (dy)/(dx) =(dy)/((dt)/((dx)/(dt)) . Hence find dy/dx if x= 2sint and y=cos2t

If x=3sint-sin3t ,y=3cos t-cos3t ,"find "(dy)/(dx)" at "t=pi/3dot