Home
Class 10
MATHS
" If "a^((1)/(3))+b^((1)/(3))+c^((1)/(3)...

" If "a^((1)/(3))+b^((1)/(3))+c^((1)/(3))=0" then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(1/3)+b^(1/3)+c^(1/3)=0 show that (a+b+c)^(3)=27 abc

If a,b,c are different and |(a,a^(2),a^(3)-1),(b,b^(2),b^(3)-1),(c,c^(2),c^(3)-1)|=0 then

If (3a+1)^(2) +(b-1)^(2) +(2c-3)^(2)=0 , then value of (3a+b+2c) is

If a+b+c=1,a^(2)+b^(2)+c^(2)=9 and a^(3)+b^(3)+c^(3)=1, then (1)/(a)+(1)/(b)+(1)/(c) is (i)0 (ii) -1(iii)1(iv)3

Prove that : tan^(-1)( (a^3 -b^3)/(1+a^3 b^3)) + tan^(-1)( (b^3 - c^3)/(1+b^3 c^3)) + tan^(-1)( (c^3 - a^3)/(1+c^3 a^3)) = 0

Prove that : tan^(-1)( (a^3 -b^3)/(1+a^3 b^3)) + tan^(-1)( (b^3 - c^3)/(1+b^3 c^3)) + tan^(-1)( (c^3 - a^3)/(1+c^3 a^3)) = 0

Suppose a,b,c, gt0 and |(a^(3)-1,a^(2),a),(b^(3)-1,b^(2),b),(c^(3)-1,c^(2),c)|=0 then least possible value of a+b+c is ____________