Home
Class 12
MATHS
I fintxlog(1+1/ x)dx=f(x)log(x+1)+g(x)x^...

`I fintxlog(1+1/ x)dx=f(x)log(x+1)+g(x)x^2+dx+C ,t h e n`

Promotional Banner

Similar Questions

Explore conceptually related problems

If intxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then

If int x log(1+(1)/(x))dx=f(x)log(x+1)+g(x)x^(2)+dx+C, then

If int x log(1+(1)/(x))dx=f(x)log(x+1)+g(x)x^(2)+Ax+C then (a)f(x)=(1)/(2)x^(2)(b)g(x)=log x(c)A=1(d) none of these

If intx log (1+(1)/(x))dx =f(x).log_(e)(x+1)+g(x)log_(e)x^(2)xLx+C , then

If intx log (1+(1)/(x))dx =f(x).log_(e)(x+1)+g(x)log_(e)x+Lx+C , then

If I=intxlog_e(1+1/x)dx=p(x)ln(1+1/x)+1/2 x-1/2, ln(1+x)+c then

Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3tan^(-1)g(x)+C ,t h e n a) both f(x)a n dg(x) are odd functions b) f(x) is monotonic function c) f(x)=g(x) has no real roots d) int(f(x))/(g(x))dx=-1/x+3/(x^3)+c