Home
Class 12
MATHS
" (i) "f(x)={[|x|cos((1)/(x)),x!=0],[0,,...

" (i) "f(x)={[|x|cos((1)/(x)),x!=0],[0,,x=0]" at "x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Discuss the continuity of f(x)={|x|cos(1/x),\ \ \ x!=0 0,\ \ \ \ x=0 at x=0

If f(x)={[(cos x)^((1)/(sin x)),,x!=0],[K,,x=0]} is differentiable at x=0 Then K=

Examine the continuity of a function f(x)={{:(|x|"cos"(1)/(x)", if "x!=0),(0", if "x=0):} at x=0 .

If the function f(x)={[(cos x)^((1)/(x)),x!=0k,x=0k,x=0]} is continuos at x=0 then the value of k]}

The function f(x)=x cos((1)/(x^(2))) for x!=0,f(0)=1 then at x=0,f(x) is

If f ( x) ={(x^(p) cos((1)/(x)),x cancel=0,(0,x=0):} is differentiable at x=0, then

Examine the following functions for continuity: f(x) = {:{(x cos (1/x), x ne 0),(0, x = 0):} at x = 0

f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .

f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .