Home
Class 11
MATHS
" (xvi) "3^(1)+3^(2)+3^(3)+...+3^(n)=(3(...

" (xvi) "3^(1)+3^(2)+3^(3)+...+3^(n)=(3(3^(n)-1))/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3.^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3.^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

1^(3)+2^(3)+3^(3)+....+n^(3)=((n(n+1))/(2))^(2)

By the principle of mathematical induction, prove that, for nge1 1^(3) + 2^(3) + 3^(3) + . . .+ n^(3)=((n(n+1))/(2))^(2)

1^(3)+2^(3)+3^(3)+. . .+n^(3)=((n(n+1))/(2))^(2) .

1^(3)+2^(3)+3^(3)+...+n^(3)=n^(2)((n+1)^(2))/(4)

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .