Home
Class 11
MATHS
" 9."lim(x rarr-(1)/(2))(2x^(2)-3x+1)/(2...

" 9."lim_(x rarr-(1)/(2))(2x^(2)-3x+1)/(2x-1)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x rarr(1)/(2))(ax^(2)+bx+c)/((2x-1)^(2))=(1)/(2) then lim_(x rarr2)((x-a)(x-b)(x-c))/(x-2) is

Show that lim_(x rarr2)[(1)/(x-2)-(1)/(x^(2)-3x+2)]=

lim_(x rarr1)((1)/(x^(2)+x-2)-(x)/(x^(3)-1))

lim_(x rarr0)(2^(2x)-1)/(x)

If lim_(x rarr(-1)/(sqrt(2)))(f(x)-2)/(2x^(2)-1)=3 pi ,then lim_(x rarr-(1)/(sqrt(2)))e^(f(x))=e^(k) then the value k will be

lim_(x rarr oo)(2x+1)/(3x-2)

lim_(x rarr3)(x^(2)-9)/(x^(3)-6x^(2)+9x+1)

Evaluate the following limits : lim_(x rarr 1/3) (9x^2-1)/(3x-1)

lim_ (x rarr (1) / (2)) ((8x-3) / (2x-1) - (4x ^ (2) +1) / (4x ^ (2) -1))

'lim_(x rarr0)(x^(2)+2x-1)/(2(x+1))'