Home
Class 12
MATHS
[2x+y=2xquad 2x],[2x-x+yquad 2x],[2x-2xq...

[2x+y=2xquad 2x],[2x-x+yquad 2x],[2x-2xquad x+y]=(5x+y)(y-x)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

By using properties of determinants , show that : (i) {:[( x+4, 2x, 2x),( 2x,x+4, 2x),( 2x,2x, x+4) ]:}=( 5x +4) (4-x)^(2) ( ii) {:[( y+k , y , y ),( y,y+ k , y ),( y,y , y+k ) ]:} =k^(2) ( 3y +k )

By using properties of determinants , show that : (i) {:|( x+4, 2x, 2x),( 2x,x+4, 2x),( 2x,2x, x+4) |:}=( 5x +4) (4-x)^(2) ( ii) {:|( y+k , y , y ),( y,y+ k , y ),( y,y , y+k ) |:} =k^(2) ( 3y +k )

(x-y^2x)dx=(y-x^2y)dy

(x-y^2x)dx=(y-x^2y)dy

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=y^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

Simplify : ( 3y ( x - y) - 2x ( y -2x))/( 7x ( x - y) - 3 ( x ^(2) - y ^(2)))