Home
Class 12
MATHS
If siny=sin(a+y),\ \ prove that (dy)/(...

If `siny=sin(a+y),\ \ ` prove that `(dy)/(dx)=(sin ^2\ (a+y))/(sina)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If siny=xsin(a+y),\ \ prove that (dy)/(dx)=(sin ^2\ (a+y))/(sina)

(dy)/(dx)=sin^(2)y

If sin y=x sin(a+y), prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If siny=xsin(a+y), prove that (dy)/(dx)= (sin^2(a+y))/(sina) .

If sin y=sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If sin y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)