Home
Class 12
MATHS
A particle moves on y^2=4ax .its distanc...

A particle moves on `y^2=4ax` .its distance from focus is minimum for following values of `x(a)-1 (b)0 (c)+1 (d)a`

Promotional Banner

Similar Questions

Explore conceptually related problems

A particle moves on the parabola y^2 = 4ax . Its distance from the focus is minimum for the following values of x (A) -1 (B) 0 (C) 1 (D) a

A particle moves on the parabola y^2 = 4ax . Its distance from the focus is minimum for the following values of x (A) -1 (B) 0 (C) 1 (D) a

The minimum value of e^(2x^2-2x+1)sin^2x is e (b) 1/e (c) 1 (d) 0

Let x , y be two variables and x >0, x y=1 , then minimum value of x+y is (a) 1 (b) 2 (c) 2 1/2 (d) 3 1/3

A point on a parabola y^(2)=4ax, the foot of the perpendicular from it upon the directrix,and the focus are the vertices of an equilateral triangle.The focal distance of the point is equal to (a)/(2) (b) a (c) 2a (d) 4a

The minimum value of |z|+|z-1|+|z-2|is(A)0(B)1(C)2(D)4

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

Let x ,\ y be two variables and x >0,\ \ x y=1 , then minimum value of x+y is (a) 1 (b) 2 (c) 2 1/2 (d) 3 1/3

The minimum value of e^((2x^(2)-2x+1)sin^(2)x) is e(b)(1)/(e)(c)1(d)0

If the family of curves y=ax^2+b cuts the family of curves x^2+2y^2-y=a orthogonally, then the value of b = (A) 1 (B) 2/3 (C) 1/8 (D) 1/4