Home
Class 10
MATHS
If sin x^(@)=sinalpha , "then " alpha " ...

If `sin x^(@)=sinalpha , "then " alpha " is"`

A

`(180)/(pi)`

B

`(pi)/(270)`

C

`(270)/(pi)`

D

`(pi)/(180)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x^\circ = \sin \alpha \), we need to find the value of \( \alpha \) in terms of \( x \). ### Step-by-Step Solution: 1. **Understanding the Equation**: We start with the equation: \[ \sin x^\circ = \sin \alpha \] 2. **Using the Sine Function Property**: The sine function has the property that if \( \sin A = \sin B \), then: \[ A = B + 360k \quad \text{or} \quad A = 180 - B + 360k \] where \( k \) is any integer. 3. **Applying the Property**: From our equation, we can set up two cases: - Case 1: \[ x^\circ = \alpha + 360k \] - Case 2: \[ x^\circ = 180 - \alpha + 360k \] 4. **Solving for \( \alpha \)**: - From Case 1: \[ \alpha = x^\circ - 360k \] - From Case 2: \[ \alpha = 180 - x^\circ + 360k \] 5. **General Solution**: Therefore, the general solutions for \( \alpha \) can be expressed as: \[ \alpha = x^\circ + 360k \quad \text{or} \quad \alpha = 180 - x^\circ + 360k \] where \( k \) is any integer. 6. **Considering the Range of \( \alpha \)**: If we restrict \( \alpha \) to a specific range, for example, \( -90^\circ \leq \alpha \leq 90^\circ \), we need to consider only the relevant solutions from the above cases. ### Final Answer: Thus, the values of \( \alpha \) can be expressed as: \[ \alpha = x^\circ + 360k \quad \text{or} \quad \alpha = 180 - x^\circ + 360k \] where \( k \in \mathbb{Z} \).

To solve the equation \( \sin x^\circ = \sin \alpha \), we need to find the value of \( \alpha \) in terms of \( x \). ### Step-by-Step Solution: 1. **Understanding the Equation**: We start with the equation: \[ \sin x^\circ = \sin \alpha ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Level 2|17 Videos
  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|18 Videos
  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Essay type Questions|2 Videos
  • TAXATION

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 3|10 Videos

Similar Questions

Explore conceptually related problems

If "sin"(x+3alpha)=3"sin"(alpha-x) , then

Solve: sin3 alpha=4sin alpha sin(x+alpha)sin(x-alpha), where alpha!=n pi,n in Z

Knowledge Check

  • If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

    A
    `x=npi pm (pi)/(3), n in I `
    B
    `x=npi pm (pi)/(6), n in I `
    C
    `x=npi pm (pi)/(2) , n in I `
    D
    None of the above
  • If sin 3 alpha =4 sin alphasin ( x + alpha) sin (x - alpha) then x =

    A
    `n pi pm pi/6`
    B
    `n pi pm pi/3`
    C
    `npi pm pi/4`
    D
    `n pi pm pi/2`
  • If sin(x +3alpha)=3 sin (alpha-x) , then

    A
    `tan x = tan alpha`
    B
    `tan x = tan^(2)alpha`
    C
    `tan x = tan^(3)alpha`
    D
    `tan x=3 tan alpha`
  • Similar Questions

    Explore conceptually related problems

    The locus of the point of intersection of the lines x cosalpha + y sin alpha= p and x sinalpha-y cos alpha= q , alpha is a variable will be

    If cos (alpha+beta)=0 , then sin(alpha-beta) canbe reduced to : (a) cosbeta (b) cos2beta ( c) sinalpha (d) sin2alpha

    If sin(x+3 alpha)=3sin (alpha-x) then

    If 4sin alphasin(x+alpha)sin(x-alpha)=sin3alpha , then general value of x is:

    The function g, defined by g(x) = sinalpha + cosalpha - 1, alpha = sin^(-1) sqrt({x}) , {.} denotes fractional part function is