Home
Class 10
MATHS
If sin^(4)theta-cos^(4)=k^(4), then sin^...

If `sin^(4)theta-cos^(4)=k^(4), then sin^(2)theta-cos^(2)theta` is __________.

A

`K^(4)`

B

`K^(3)`

C

`K^(2)`

D

`K`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \sin^4 \theta - \cos^4 \theta = k^4 \] We can use the difference of squares formula, which states that \(A^2 - B^2 = (A - B)(A + B)\). Here, we can let \(A = \sin^2 \theta\) and \(B = \cos^2 \theta\). Thus, we can rewrite the equation as: \[ (\sin^2 \theta - \cos^2 \theta)(\sin^2 \theta + \cos^2 \theta) = k^4 \] Next, we know from the Pythagorean identity that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting this into our equation gives us: \[ (\sin^2 \theta - \cos^2 \theta)(1) = k^4 \] This simplifies to: \[ \sin^2 \theta - \cos^2 \theta = k^4 \] Thus, the value of \(\sin^2 \theta - \cos^2 \theta\) is: \[ \sin^2 \theta - \cos^2 \theta = k^4 \] So, the final answer is: \[ \sin^2 \theta - \cos^2 \theta = k^4 \]

To solve the problem, we start with the given equation: \[ \sin^4 \theta - \cos^4 \theta = k^4 \] We can use the difference of squares formula, which states that \(A^2 - B^2 = (A - B)(A + B)\). Here, we can let \(A = \sin^2 \theta\) and \(B = \cos^2 \theta\). Thus, we can rewrite the equation as: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Level 2|17 Videos
  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|18 Videos
  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Essay type Questions|2 Videos
  • TAXATION

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 3|10 Videos

Similar Questions

Explore conceptually related problems

"(i) "sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta

sin^(4)theta+sin^(2)theta cos^(2)theta=

sin^(4)theta+cos^(4)theta=1-2sin^(2)theta cos^(2)theta

If sin^(4)theta-cos^(4)theta=k^(4) , then the value of sin^(2)theta-cos^(2)theta is

(sin^(4)theta-cos^(4)theta)/(sin^(2)-cos^(2)theta) = ______________.

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

If sin theta+cos theta=a, then sin^(4)theta+cos^(4)theta=

The value of (2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta))/(cos^(4)theta-sin^(4)theta-2cos^(2)theta) is :