Home
Class 10
MATHS
The value of (cos^(4)x+cos^(2)xsin^(2)x...

The value of `(cos^(4)x+cos^(2)xsin^(2)x+sin^(2)x)/(cos^(2)x+sin^(2)xcos^(2)x+sin^(4)x)` is __________.

A

2

B

1

C

3

D

0

Text Solution

Verified by Experts

The correct Answer is:
B

Simplify the numerator and denominator by taking common terms appropriately.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Level 2|17 Videos
  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|18 Videos
  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Essay type Questions|2 Videos
  • TAXATION

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 3|10 Videos

Similar Questions

Explore conceptually related problems

sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x

sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x

int(sin^(2)x-cos^(2)x)/(sin^(2)xcos^(2)x)dx=

sin^(4)x+cos^(4)x=1-2sin^(2)x cos^(2)x

If sin^(2)4x+cos^(2)x=2sin4x cos^(2)x, then

The value of int(sin^(2)xcos^(2)x)/((sin^(3)x+cos^(3)x)^(2))dx , is

int(cos2x)/(sin^(2)xcos^(2)x)dx=

int(sin^(4)2x+cos^(4)2x)/(sin^(2)2xcos^(2)2x)dx=

Prove that sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x

Prove that sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x