Home
Class 10
MATHS
Find the value of sin^(2)5^(@)+ sin^(2)1...

Find the value of `sin^(2)5^(@)+ sin^(2)10^(@)+ sin^(2)15^(@)+* * * +sin^(2)90^(@)`.

A

8

B

9

C

`(17)/(2)`

D

`(19)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + \ldots + \sin^2 90^\circ \), we can use the properties of sine and some known identities. ### Step 1: Identify the Series The series consists of \( \sin^2 \) values from \( 5^\circ \) to \( 90^\circ \) in increments of \( 5^\circ \). The angles are: \[ 5^\circ, 10^\circ, 15^\circ, \ldots, 90^\circ \] ### Step 2: Count the Terms The angles form an arithmetic series where: - First term \( a = 5^\circ \) - Last term \( l = 90^\circ \) - Common difference \( d = 5^\circ \) To find the number of terms \( n \): \[ n = \frac{l - a}{d} + 1 = \frac{90 - 5}{5} + 1 = \frac{85}{5} + 1 = 17 + 1 = 18 \] ### Step 3: Use the Identity for Sine We can use the identity: \[ \sin^2 x = \frac{1 - \cos(2x)}{2} \] Thus, we can rewrite the series: \[ \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + \ldots + \sin^2 90^\circ = \sum_{k=1}^{18} \sin^2(5k^\circ) \] ### Step 4: Apply the Identity Using the identity, we have: \[ \sum_{k=1}^{18} \sin^2(5k^\circ) = \sum_{k=1}^{18} \frac{1 - \cos(10k^\circ)}{2} \] This can be simplified to: \[ \frac{1}{2} \sum_{k=1}^{18} (1 - \cos(10k^\circ)) = \frac{1}{2} \left( \sum_{k=1}^{18} 1 - \sum_{k=1}^{18} \cos(10k^\circ) \right) \] ### Step 5: Calculate the First Part The first part is straightforward: \[ \sum_{k=1}^{18} 1 = 18 \] ### Step 6: Calculate the Cosine Sum Now we need to calculate \( \sum_{k=1}^{18} \cos(10k^\circ) \). This is a finite geometric series: \[ \sum_{k=1}^{n} \cos(a + (k-1)d) = \frac{\sin\left(\frac{nd}{2}\right) \cos\left(a + \frac{(n-1)d}{2}\right)}{\sin\left(\frac{d}{2}\right)} \] Here, \( n = 18 \), \( a = 10^\circ \), and \( d = 10^\circ \): \[ \sum_{k=1}^{18} \cos(10k^\circ) = \frac{\sin\left(90^\circ\right) \cos\left(10^\circ + 85^\circ\right)}{\sin(5^\circ)} = \frac{1 \cdot \cos(95^\circ)}{\sin(5^\circ)} = \frac{-\sin(5^\circ)}{\sin(5^\circ)} = -1 \] ### Step 7: Substitute Back Now substituting back: \[ \sum_{k=1}^{18} \sin^2(5k^\circ) = \frac{1}{2} \left( 18 - (-1) \right) = \frac{1}{2} \cdot 19 = 9.5 \] ### Final Answer Thus, the value of \( \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + \ldots + \sin^2 90^\circ \) is: \[ \boxed{9.5} \]

To find the value of \( \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + \ldots + \sin^2 90^\circ \), we can use the properties of sine and some known identities. ### Step 1: Identify the Series The series consists of \( \sin^2 \) values from \( 5^\circ \) to \( 90^\circ \) in increments of \( 5^\circ \). The angles are: \[ 5^\circ, 10^\circ, 15^\circ, \ldots, 90^\circ \] ### Step 2: Count the Terms The angles form an arithmetic series where: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Level 2|17 Videos
  • TAXATION

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 3|10 Videos

Similar Questions

Explore conceptually related problems

sin^(2) 75^(@) - sin^(2)15^(@)=

What is the value of sin^(2) 15^(@) + sin^(2) 20^(@) + sin^(2)25^(@) + ……… + sin^(2) 75^(@) ?

Find the value of sin37(1/2)^(@).sin7 (1/2)^(@)

The value of sin^(2) 1^(@) + sin^(2) 2^(@) + sin^(2) 3^(@)+ . . . . + sin^(2) 89^(@) + sin ^(2) 90^(@) is

Find the value of (sin^2 33^@ + sin^2 57^@)

What is the value of the sin^(2) 6^(@) + sin^(2) 12^(@) + sin^(2) 18^(@) + "……" + sin^(2) 84^(@) + sin^(2) 90^(@) ?

Find the value of sin^(2)1^(@)+sin^(2)2^(@)+sin^(2)3^(@)+ ----+sin^(2)87^(@)+sin^(2)88^(@)+sin^(2)89^(@)+sin^(2)90^(@) .

Write the value of 2sin 75^(@) sin15^(@)

Find the value of sin^(2)(120^(@)-A)+sin^(2)A+sin^(2)(120^(@)+A):

PEARSON IIT JEE FOUNDATION-TRIGONOMETRY-Level 3
  1. There is a small island in the middle of a 100m wide river and a ta...

    Text Solution

    |

  2. A ballon is connected to a metrorological ground station by a cable of...

    Text Solution

    |

  3. If sin2A=2sinA cosAand sin20^(@)=K, " then the value of " cos20^(@)cos...

    Text Solution

    |

  4. If sqrt2 costheta-sqrt6 sintheta=2sqrt2, then the value of theta can ...

    Text Solution

    |

  5. A circus artist is climbing from the ground along a rope stretched ...

    Text Solution

    |

  6. Find the value of sin^(2)5^(@)+ sin^(2)10^(@)+ sin^(2)15^(@)+* * * +si...

    Text Solution

    |

  7. If sectheta+tantheta=2, then find the value of sintheta.

    Text Solution

    |

  8. If costheta+((1)/(sqrt3))sintheta=(2)/(sqrt3), then find theta in circ...

    Text Solution

    |

  9. sqrt((1+sintheta)/(1-sintheta)) = .

    Text Solution

    |

  10. If (sin^(2)theta-5sintheta+3)/(cos^(2)theta)=1, then theta can be .

    Text Solution

    |

  11. If cottheta=(24)/(7)" and "theta is not in the first quadrant, then fi...

    Text Solution

    |

  12. If sin20^(@)=p, " then find the value of " ((sin380^(@)-sin340^(@))/(c...

    Text Solution

    |

  13. Find the value tan(22(1)/(2)).

    Text Solution

    |

  14. If the sun ray' inclination increases from 45^(@) to 60^(@) the length...

    Text Solution

    |

  15. The angles of depression of two points from the top of the tower are 3...

    Text Solution

    |

  16. From a point on the ground, the angle of elevation of an aeroplane fly...

    Text Solution

    |

  17. From the top of a building, the angle of elevation and depression of t...

    Text Solution

    |

  18. If the figure given below ( not to scale), ABCD, CBEF and EGHF are thr...

    Text Solution

    |