Home
Class 11
MATHS
यदि a, b, c समान्तर श्रेढ़ी में हो, तो सि...

यदि a, b, c समान्तर श्रेढ़ी में हो, तो सिद्ध कीजिए की
`a^2 (b+c)+b^2 (c+a)+c^2 (a+b) = 2/9 (a+b+c)^3`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are in AP, than show that a^(2)(b+c)+b^(2)(c+a)+c^(2)(a+b)=(2)/(9)(a+b+c)^(3) .

If a,b,c are in AP, than show that a^(2)(b+c)+b^(2)(c+a)+c^(2)(a+b)=(2)/(9)(a+b+c)^(3) .

If a,b,c are in AP, than show that a^(2)(b+c)+b^(2)(c+a)+c^(2)(a+b)=(2)/(9)(a+b+c)^(3) .

If a,b,c are in AP, than show that a^(2)(b+c)+b^(2)(c+a)+c^(2)(a+b)=(2)/(9)(a+b+c)^(3) .

Show that: |(b+c)^2b a c a a b(c+a)^2c b a c b c(a+b)^2|=2a b c(a+b+c)^3

If a^2 + b^2 + c^2 = 2(a -b -c)- 3 ,then the value of (a- b + c) is यदि a^2 + b^2 + c^2 = 2(a -b -c)- 3 तो (a- b + c) का मान है-

|(a-b-c, 2a, 2a),(2b, b-c-a,2b),(2c,2c,c-a-b)| = (a + b + c)^(3) .

((a-b)^(3)+(b-c)^(2)+(c-a)^(3))/(9(a-b)(b-c)(c-a))=?