Home
Class 11
MATHS
If t(1),t(2) and t(3) are distinct, the ...

If `t_(1),t_(2) and t_(3)` are distinct, the points `(t_(1)2at_(1)+at_(1)^(3)), (t_(2),2"at"_(2)+"at_(2)^(3)) and (t_(3) ,2at_(3)+at_(3)^(3))`

A

`t_(1)t_(2)t_(3)=1`

B

`t_(1)+t_(2)+t_(3)=t_(1)t_(2)t_(3)`

C

`t_(1)+t_(2)+t_(3)=0`

D

`t_(1)+t_(2)+t_(3)=-1`

Text Solution

Verified by Experts

The correct Answer is:
C

The given point are collinear if
`|{:(t_(1),2at_(1)+at_(1)^(3),1),(t_(2),2at_(2)+at_(2)^(3),1),(t_(3),2at_(3)+at_(3)^(3),1):}|=0`
`rArr|{:(t_(1),2t_(1)+t_(1)^(3),1),(t_(2),2t_(2)+t_(2)^(3),1),(t_(3),2t_(3)+t_(3)^(3),1):}|`
Applying `R_(2)rarrR_(2)-R_(1),R_(3)rarrR_(3)-R_(1)"we get"`
`rArr(t_(2)-t_(1))(t_(3)-t_(1))|{:(t_(1),2t_(1)+t_(1)^(3),1),(1,2+t_(2)^(2)+t_(1)^(2)+t_(2)t_(1),0),(1,2+t_(3)^(2)+t_(1)^(2)+t_(3)t_(1),0):}|=0`
`(t_(2)-t_(1))(t_(3)-t_(1))(t_(3)-t_(2))(t_(3)+t_(1))=0`
`rArr t_(1)+t_(2)+t_(3)=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If t_(1)!=t_(2)!=t_(3) are the lines t_(1)x+y=2at_(1)+at_(1)^(3),t_(2)x+y=2at_(2)+at_(2)^(3),t_(3)x+y=2at_(3)+at_(3)^(3) are concurrent then t_(1)+t_(2)+t_(3)=

The points (at_(1)^(2),2at_(1)),(at_(2)^(2),2at_(2)) and (a,0) will be collinear,if

The three distinct point A(t_(1)^(2),2t_(1)),B(t_(2)^(2),2t_(2)) and C(0,1) are collinear,if

Find the area of that triangle whose vertices are (at_(1)^(2),2at_(1)),(at_(2)^(2),2at_(2))and(at_(3)^(2),2at_(3)).

If a circle intersects the parabola y^(2) = 4ax at points A(at_(1)^(2), 2at_(1)), B(at_(2)^(2), 2at_(2)), C(at_(3)^(2), 2at_(3)), D(at_(4)^(2), 2at_(4)), then t_(1) + t_(2) + t_(3) + t_(4) is

Find the are of triangle whose vertex are: (at_(1),(a)/(t_(1)))(at_(2),(a)/(t_(2)))(at_(3),(a)/(t_(3)))

Prove that the area of the triangle whose vertices are : (at_(1)^(2),2at_(1)) , (at_(2)^(2),2at_(2)) , (at_(3)^(2),2at_(3)) is a^(2)(t_(1)-t_(2))(t_(2)-t_(3))(t_(3)-t_(1)) .