Home
Class 12
MATHS
Show that sin^2 theta = (x^2+y^2)/(2xy) ...

Show that `sin^2 theta = (x^2+y^2)/(2xy)` is possible for real value of `x and y` only when `x= y !=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(2)theta=((x+y)^(2))/(4)xy is possible for real values of x and y only when x=y and x!=0.

Prove that sin^2theta=(x+y)^2/(4xy) is possible for real values of x and y only when x = y , y!=0 and x!=0 .

sin theta = ( x + Y)/( 2 sqrt(xy)) is possible

Show that sec^2theta=(4xy)/(x+y)^2 is possible only if x = y

Is the equation sec^(2)theta=(4xy)/((x+y)^(2)) possible for real values of x and y ?

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if