Home
Class 12
MATHS
A is a matrix of 3xx3 and a(ij) is its e...

`A` is a matrix of `3xx3` and `a_(ij)` is its elements of `i^(th)` row and `j^(th)` column. If `a_(ij)+a_(jk)+a_(ki)=0` holds for all `1 le i, j, kle 3` then

Promotional Banner

Similar Questions

Explore conceptually related problems

Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. Matrix A is

Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. Matrix A is

Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. Matrix A is

Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. Matrix A is

Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. Matrix A is

Let A = [a_(ij)]_(3xx 3) If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 hold for all 1 le i, j, k le 3. sum_(1lei) sum_(jle3) a _(ij) is not equal to

Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. sum_(1lei) sum_(jle3) a _(ij) is not equal to

Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. sum_(1lei) sum_(jle3) a _(ij) is not equal to

Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. sum_(1lei) sum_(jle3) a _(ij) is not equal to

In a third order matrix A, a_(ij) denotes the element in the i^(th) row and j^(th) column. If a_(ij) = {{:(0,"for I"= j),(1,"for I" gt j),(-1,"for I"lt j):} then the matrix is