Home
Class 12
MATHS
If f:R->R satisfies f(x+y)=f(x)+f(y),f...

If `f:R->R` satisfies `f(x+y)=f(x)+f(y)`,for all `x,y in R and f(1)=2` then `sum_(r=1)^7 f(1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R rarr R satisfies f(x+y)=f(x)+f(y), for all x,y in R and f(1)=2 then sum_(r=1)^(7)f(1)

If f : R to R satisfies f(x + y)=f(x)+f(y) for all x, y in R and f(1)=7 , then sum_(r=1)^n f(r)

If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,y in R and f(1)=7, then sum_(r=1)^(n) f(r) , is

If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,y in R and f(1)=7, then sum_(r=1)^(n) f(r) , is

If f:R to R satisfies f(x+y)=f(x)+f(y), for all x, y in R and f(1)=7, then sum_(r=1)^(n)f( r) is

If f:R to R satisfies f(x+y)=f(x)+f(y), for all x, y in R and f(1)=7, then sum_(r=1)^(n)f( r) is

If F :R to R satisfies f(x +y ) =f(x) + f(y) for all x ,y in R and f (1) =7 , then sum_(r=1)^(n) f(R ) is

if f: 9R to 9R satisfies f(x+y)=f(x)+f(y) , for all x, y , in 9 R and f(1)=10 then sum_(r=1)^(n) f(r)

If f:RtoR satisfies f(x+y)=f(x)+f(y), for all real x,y and f(1)=m. then: sum_(r=1)^(n)f(r)=

If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,yinRandf(1)=7 , then sum_(r=1)^(n)f(r) is :