Home
Class 12
MATHS
If A ,B,C are three non-singular matric...

If `A ,B,C` are three non-singular matrices of same order and `|A|` is a function of `x` and `A^(2)=A^(-1),B=A^(2^(n)),C=A^(2^(n-2))`, `n in N` .If `f'(x)=det(B-C)` and `f(7)=5` ,then the value of `f(5)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B and C arae three non-singular square matrices of order 3 satisfying the equation A^(2)=A^(-1) let B=A^(8) and C=A^(2) ,find the value of det (B-C)

If there are three square matrix A,B,C of same order satisfying the equation A^(2)=A^(-1) and B=A^(2) and C=A^((n-2)) then prove that det.(B-C)=0,n in N

Let A;B;C be square matrices of the same order n. If A is a non singular matrix; then AB=AC then B=C

If A,B and C are square matrices of order n and det (A)=2, det(B)=3 and det ©=5, then find the value of 10det (A^(3)B^(2)C^(-1)).

If A is a non singular square matrix then |adj.A| is equal to (A) |A| (B) |A|^(n-2) (C) |A|^(n-1) (D) |A|^n

If A,B and C are n xx n matrices and det(A)=2,det(B)=3 and det(C)=5 then the value of the det (A^(2)BC^(-1)) is equal to

If A and B are square matrices of the same order and A is non-singular,then for a positive integer n,(A^(-1)BA)^(n) is equal to A^(-n)B^(n)A^(n) b.A^(n)B^(n)A^(-n) c.A^(-1)B^(n)A d.n(A^(-1)BA)

If B,C are n rowed square matrices and if A=B+C,BC=CB,C^(2)=O, then show that for every n in N,A^(n+1)=B^(n)(B+(n+1)C)