Home
Class 11
MATHS
lim(x rarr oo)(a(0)x^(n)+a(1)x^(n-1)+a(2...

`lim_(x rarr oo)(a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+...+a_(n))/(b_(0)x^(m)+b_(1)x^(m-1)+b_(2)x^(m-2)+...+b_(m)) ; m, n>0` is equal to
A.`0` when `m > n`
B. `oo` when `m < n`
C. `(a_(0))/(b_(0))` when `m=n`
D. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate |x|+a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-1)+...+a_(n-1)x+a_(n)

lim_(x rarr oo)(a_(n)x^(n)+...+a_(1)x+a_(0))/(b_(m)x^(m)+.....+b_(1)x+b_(0))= (n < m)

lim_(x rarr oo){((a_(1))^((1)/(x))+(a_(2))^((1)/(x))+...+(a_(n))^((1)/(x)))/(n)}^(nx)

lim_(x rarr0)((a_(1)^(x)+a_(2)^(x)......+a_(n)^(x))/(n))^((1)/(x))=

lim_(x rarr oo)[((x+a_(1))(x+a_(2))dots.......(x+a_(n)))^((1)/(n))-x]

Let f(x)=a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+......+a_(n),(a_(0)!=0) if a_(0)+a_(1)+a+_(2)+......+a_(n)=0 then the root of f(x) is

a_(0)f^(n)(x)+a_(1)f^(n-1)(x)*g(x)+a_(2)f^(n-2)g^(2)(x)+......+a_(n)g^(n)(x)>=0

If n is a positive integer,then find the value of lim_(n rarr oo)(a_(0)x^(n)+a_(1)x^(n-1)+...+a_(n))/(b_(0)x^(n)+b_(1)x^(n-1)+...+b_(n))

If n is a positive integer,then find the value of lim_(n rarr oo)(a_(0)x^(n)+a_(1)x^(n-1)+...+a_(n))/(b_(0)x^(n)+b_(1)x^(n-1)+...+b_(n))

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(2n)x^(2n), then a_(0)+a_(2)+a_(4)+....+a_(2n) is