Home
Class 12
MATHS
If beta is one of the angles between the...

If `beta` is one of the angles between the normals to the ellipse, `x^2+3y^2=9` at the points `(3 cos theta, sqrt(3) sin theta)" and "(-3 sin theta, sqrt(3) cos theta), theta in (0,(pi)/(2))`, then `(2 cos beta)/(sin 2 theta)` is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

If cos theta+sqrt(3)sin theta=2, then theta=

The distance between the points (cos theta,sin theta) and (sin theta-cos theta) is sqrt(3)(b)sqrt(2)(d)1

If 2 - cos^(2) theta = 3 sin theta cos theta , sin theta ne cos theta then tan theta is

One of the general solutions of sqrt(3) cos theta -3 sin theta =4 sin 2 theta cos 3 theta is

(sin theta-2sin^(3)theta)/(2cos^(3)theta-cos theta)=tan theta

Prove that (sin theta - 2 sin^(3) theta)/(2 cos^(3) theta - cos theta) = tan theta

Prove that: (sin theta - 2 sin^(3) theta) = (2cos^(3) theta - cos theta) tan theta .