Home
Class 11
MATHS
If vec P+vec Q=vec R and vec P-vec Q=vec...

If `vec P+vec Q=vec R` and `vec P-vec Q=vec S`, then `R^(2)+S^(2)` is equal to
(A) `P^(2)+Q^(2)`
(B) `2(P^(2)-Q^(2))`
(C) `2(P^(2)+Q^(2))`
(D) 4PQ

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

If vec p xxvec q=vec r and vec p*vec q=c, then vec q is

If vec P+ vec Q = vec R and |vec P| = |vec Q| = | vec R| , then angle between vec P and vec Q is

If vec P xx vec Q= vec R, vec Q xx vec R= vec P and vec R xx vec P = vec Q then

if vec(P) xx vec(R ) = vec(Q) xx vec(R ) , then

If |vec P xx vec Q|=PQ then the angle between vec P and vec Q is

vec P+vec Q+vec R=0 and vec |p|=8,vec |Q|=15 and vec |R|=17 angle between vec P and vec Q is

If |vec p|=2|vec q|=3 then (|vec p xxvec q|)/(sin(vec p,vec q))=

The resultant vector of vec(P) and vec(Q) is vec(R) . On reversing the direction of vec(Q) , the resultant vector becomes vec(S) . Show that : R^(2) +S^(2) = 2(P^(2)+Q^(2))

If |vec(P) + vec(Q)| = |vec(P) - vec(Q)| , find the angle between vec(P) and vec(Q) .