Home
Class 11
MATHS
The locus of the point,for which the sum...

The locus of the point,for which the sum of the squares of distances from the coordinate axes is 19 is
(A) `x^(2)+y^(2)=19`
(B) `x^(2)+y^(2)=25`
(c) `x^(2)+y^(2)=32`
(D) `x^(2)+y^(2)=29`

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of point such that the sum of the squares of its distances from the planes x+y+z=0, x-z=0 and x-2y+z=0 is 9 is (A) x^2+y^2+z^2=3 (B) x^2+y^2+z^2=6 (C) x^2+y^2+z^2=9 (D) x^2+y^2+z^2=12

The equation to the locus of a point P for which the distance from P to (0,5) is double the distance from P to y -axis is 1) 3x^(2)+y^(2)+10y-25=0 2) 3x^(2)-y^(2)+10y+25=0 3) 3x^(2)-y^(2)+10y-25=0 4) 3x^(2)+y^(2)-10y-25=0

The locus of the point of intersection of the tangents at the extremities of the chords of the ellipse x^(2)+2y^(2)=6 which touch the ellipse x^(2)+4y^(2)=4, is x^(2)+y^(2)=4(b)x^(2)+y^(2)=6x^(2)+y^(2)=9(d) None of these

Tangents drawn from the point P(1,8) to the circle x^(2)+y^(2)-6x-4y-11=0 touch the circle at the points A and B. The equation of the circumcircle of the triangle PAB is (A) x^(2)+y^(2)+4x-6y+19=0 (B) x^(2)+y^(2)-4x-10y+19=0 (B) x^(2)+y^(2)-2x+6y-29=0 (D) x^(2)+y^(2)-6x-4y+19=0

Locus of feet of perpendicular from (5,0) to the tangents of (x^(2))/(16)-(y^(2))/(9)=1 is (A)x^(2)+y^(2)=4(B)x^(2)+y^(2)=16(C)x^(2)+y^(2)=9(D)x^(2)+y^(2)=25

Let the foci of the ellipse (x^(2))/(9)+y^(2)=1 subtend a right angle at a point P. Then,the locus of P is (A) x^(2)+y^(2)=1(B)x^(2)+y^(2)=2 (C) x^(2)+y^(2)=4(D)x^(2)+y^(2)=8

If x=10 and y=0.1, which of the following is the greatest? x^(2)+y^(2)( b) x^(2)-y^(2)( c) x^(2)backslash y^(2) (d) (x^(2))/(y^(2))

Find the radical center of the circles x^(2)+y^(2)+4x+6y=19,x^(2)+y^(2)=9,x^(2)+y^(2)-2x-4y=5