Home
Class 12
MATHS
Find (dy)/(dx), when: y=(tanx)^(cotx)...

Find `(dy)/(dx)`, when:
`y=(tanx)^(cotx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=(tanx)^(sinx)

Find (dy)/(dx) , when: y=(tanx)^(1//x)

Find (dy)/(dx) when : y=(x+tanx)/(tanx)

Find (dy)/(dx) where y=(tanx)/(x)

Find (dy)/(dx) , when: (tanx)^(y)=(tany)^(x)

Find (dy)/(dx) when : y=(x+cos x)/(tanx) .

Find (dy)/(dx)" when "y=(x+cosx)/(tanx) .

Find dy/dx : y=(tanx)^(cotx)+(cotx)^(tanx)

Find (dy)/(dx) , when If y = sqrt((sec x - tanx)/(sec x + tanx)) , show that (dy)/(dx) = sec x (tanx - sec x) .

(i) If y=(sinx), find (dy)/(dx) . (ii) If y=(cosx)^(x) , find (dy)/(dx) . (iii) If y=(tanx)^(x) , find (dy)/(dx) .