Home
Class 9
MATHS
" 6."p(x)=2x^(3)+9x^(2)-11x-30,g(x)=x+5...

" 6."p(x)=2x^(3)+9x^(2)-11x-30,g(x)=x+5

Promotional Banner

Similar Questions

Explore conceptually related problems

Using factor theorem , show that g (x) is a factor of p(x) , when p(x)=2x^(3)+9x^(2)-11x-30,g(x)=x+5

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=2x^(3)+3x^(2)-11x-3,g(x)=(x+(1)/(2)) .

f(x)=x^(3)-6x^(2)+11x-6;g(x)=x-3

Verify the division algorithm for the polynomials p(x)=2x^(4)-6x^(3)+2x^(2)-x+2andg(x)=x+2 . p(x)=2x^(3)-7x^(2)+9x-13,g(x)=x-3 .

f(x)=2x^(3)-9x^(2)+x+12,g(x)=3-2x

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=2x^(3)-7x^(2)+9x-13,g(x)=x-3 .

Using factor theorem , show that g (x) is a factor of p(x) , when p(x)=2x^(4)+9x^(3)+6x^(2)-11x-6,g(x)=x-1

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=x^(3)-6x^(2)+9x+3,g(x)=x-1 .