Home
Class 12
MATHS
[y=x+e^(x)" then "(d^(2)x)/(dy^(2))" is ...

[y=x+e^(x)" then "(d^(2)x)/(dy^(2))" is "],[qquad [(1)/((+e^(x))^(2))[(-e^(x))/((1+e^(x^(2)))^(2))o.-(e^(x))/((1+e^(x))^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

y=sinx+e^(x) then (d^(2)x)/(dy^(2)) is:

y=sinx+e^(x) then (d^(2)x)/(dy^(2)) is:

If y=x+e^(x), then (d^(2)x)/(dy^(2)) is equal to

If y=x+e^(x), find (d^(2)x)/(dy^(2))

If y=sinx+e^(x)," then "(d^(2)x)/(dy^(2)) equals

y=x+e^x , then (d^2x)/(dy^2) is equal to

If y= sin x +e^(x) then (d^2x)/(dy^2) =

If y = x+e^(x) ,then find d^(2)x/dy^(2) .