Home
Class 12
MATHS
sin^(-1)x+sin^(-1)y=(pi)/(2)...

sin^(-1)x+sin^(-1)y=(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the point (x,y) which moves such that sin^(-1)2x+sin^(-1)y=(pi)/(2) is a circle b . a hyperbola c.a straight d.an ellipse

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(pi)/(2) , then the value of x^(2)+y^(2)+z^(2)+2xyz is equal to

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(pi)/(2) , then the value of x^(2)+y^(2)+z^(2)+2xyz is equal to

If sin^(-1)x+sin^(-1)y=(2pi)/(3)",then"cos^(-1)x+cos^(-1)y is equal to

If sin^(-1)x +sin^(-1)y =(2pi)/(3) , then find the value of cos^(-1)x +cos^(-1)y .

If sin^(-1)x+sin^(-1)y=(2 pi)/(3) ,then the value of cos^(-1)x+cos^(-1)y is (A) (2 pi)/(3) (B) (pi)/(3) (C) (pi)/(2) (D) pi

If sin^(-1)x+sin^(-1)y=(2 pi)/(3) and cos^(-1)x-cos^(-1)y=-(pi)/(3) then the number of values of (x,y) is

If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3) then the number of values of (x, y) is :

What are the values of (x, y) satisfying the simultaneous equation sin^(-1)x + sin^(-1)y=(2pi)/(3)and cos^(-1)x - cos^(-1)y=(pi)/(3) ?

If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3) then the number of values of (x, y) is :