Home
Class 12
MATHS
[15.,1,omega,omega^(2)],[omega,omega^(2)...

[15.,1,omega,omega^(2)],[omega,omega^(2),1],[omega^(2),omega,1]

Promotional Banner

Similar Questions

Explore conceptually related problems

{[(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)] + [(omega,omega^(2),1),(omega^(2),1,omega),(omega,omega^(2),1)]} [(1),(omega),(omega^(2))]

If omega is a cube root of unity |(1, omega, omega^(2)),(omega, omega^(2), 1),(omega^(2), omega, 1)| =

If omega=-(1)/(2)+i (sqrt(3))/(2) , the value of [[1, omega, omega^(2) ],[ omega, omega^(2), 1],[ omega^(2),1, omega]] is

Evaluate the following determinants. [[1,omega,omega^2],[omega,omega^2,1],[omega^2,1,omega]]

If omega is complex cube root of 1 then S.T [(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)]=0

Prove that , {[{:(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega):}]+[{:(omega,omega^(2),1),(omega^(2),1,omega),(omega,omega^(2),1):}]}[{:(1),(omega),(omega^(2)):}]=[{:(0),(0),(0):}] where omega is the cube root of unit.

|[1,omega,omega^2] , [omega, omega^2,1] , [omega^2,1,omega]|=0

det [[1, omega, omega^(2) omega, omega^(2), 1omega^(2), 1, omega]]

if omega be the cube root of unit then what is the value of |[1,omega ,omega^2],[omega, omega^2,1],[omega^2,1,omega ]| ?

If omega is a complex cube root of unity, show that ([[1,omega,omega^2],[omega,omega^2, 1],[omega^2, 1,omega]]+[[omega,omega^2, 1],[omega^2 ,1,omega],[omega,omega^2, 1]])[[1,omega,omega^2]]=[[0, 0 ,0]]