Home
Class 12
MATHS
x((del^(3)y)/(dx^(3)))^(2)+((dy)/(dx))^(...

x((del^(3)y)/(dx^(3)))^(2)+((dy)/(dx))^(b)+9y=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the order and degree of the differential equation xy((d^(2)y)/(dx^(2)))^(2)+x((dy)/(dx))^(3)-y(dy)/(dx)=0 .

Find the order and degree of the following D.E's (i) (d^(2)y)/(dx^(2)) + 2((dy)/(dx))^(2) + 5y = 0 (ii) 2(d^(2)y)/(dx^(2)) = (5+(dy)/(dx))^((5)/(3)) (iii) 1+((d^(2)y)/(dx^(2)))^(2) = [2+((dy)/(dx))^(2)]^((3//2)) (iv) [(d^(2)y)/(dx^(2))+((dy)/(dx))^(3)]^((6/(5)) = 6y (v) [((dy)/(dx))^(2) + (d^(2)y)/(dx^(2))]^((7)/(3)) = (d^(3y))/(dx^(3)) (vi) [((dy)/(dx))^((1)/(2)) + ((d^(2)y)/(dx^(2)))^((1)/(2))]^((1)/(4)) = 0 (vii) (d^(2)y)/(dx^(2)) + p^(2)y = 0 (viii) ((d^(3)y)/(dx^(3)))^(2) -3((dy)/(dx))^(2) - e^(x) = 4

The degree of the differential equation : xy((d^(2)y)/(dx^(2)))^(2)+x^(4)((dy)/(dx))^(3)-y(dy)/(dx)=0 is :

What is the degree of x((d^(2)y)/(dx^(2)))^(3)+y((dy)/(dx))^(4)+x^(3)=0 ?

Find the order and degree of the following differential equations. i) (dy)/(dx)+y=1/((dy)/(dx)) , ii) e^((d^(3)y)/(dx^(3)))-x(d^(2)y)/(dx^(2))+y=0 , iii) sin^(-1)((dy)/(dx))=x+y , iv) log_(e)((dy)/(dx))=ax+by v) y(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-4y(dy)/(dx)=0

y^(3) - (dy)/(dx) =x^(2) (dy)/(dx)

Find the order and degree of the following differential equations. i) (dy)/(dx)+y=1/((dy)/(dx)) , ii) e^(e^(3)y)/(dx^(3))-x(d^(2)y)/(dx^(2))+y=0 , iii) sin^(-1)(dy)/(dx)=x+y , iv) log_(e)(dy)/(dx)=ax+by v) y(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-4y(dy)/(dx)=0

Find the order and degree of the following differential equations. i) (dy)/(dx)+y=1/((dy)/(dx)) , ii) e^(e^(3)y)/(dx^(3))-x(d^(2)y)/(dx^(2))+y=0 , iii) sin^(-1)(dy)/(dx)=x+y , iv) log_(e)(dy)/(dx)=ax+by v) y(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-4y(dy)/(dx)=0

If y=log(1+cos x), prove that (d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))(dy)/(dx)=0

y=log(1+cos x), prove that (d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))*(dy)/(dx)=0