Home
Class 11
MATHS
" Prove that ":sqrt(-i)=(1-i)/(sqrt(2))...

" Prove that ":sqrt(-i)=(1-i)/(sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(-i) = (1-i)/sqrt2

Prove that : (i) sqrt(i)= (1+i)/(sqrt(2)) (ii) sqrt(-i)=(1- i)/(sqrt(2)) (iii) sqrt(i)+sqrt(-i)=sqrt(2)

Prove that : (i) sqrt(i)= (1+i)/(sqrt(2)) (ii) sqrt(-i)=(1- i)/(sqrt(2)) (iii) sqrt(i)+sqrt(-i)=sqrt(2)

sqrt(i)+sqrt(-i)=sqrt(2)

sqrt(i)-sqrt(-i)=sqrt(2)

Prove that sqrt i+sqrt(-i)=sqrt 2

Prove that ((i-sqrt(3))/(-i+sqrt(3)))^(200)+((i-sqrt(3))/(i+sqrt(3)))^(200)=-1

Prove that [(i+sqrt(3))/(-i+sqrt(3))]^(100)+[(i-sqrt(3))/(i+sqrt(3))]^(100)=-1

Prove that ((i-sqrt(3))/(i+sqrt(3)))^(100)+((i+sqrt(3))/(i-sqrt(3)))^(100)=-1

(5+sqrt(2)i)/(1-2sqrt(i))