Home
Class 9
MATHS
a^(2)b+6c+ac+a|...

a^(2)b+6c+ac+a|

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression y=ax^(2)+bx+c has always the same sign as of a if (A)4ac b^(2)(C)4ac=b2(D)ac

If A = [[0,c,-b],[-c,0,a],[b,-a,0]] and B = [[a^(2),ab,ac],[ab,b^2,bc],[ac,bc,c^(2)]] then A B=

Factorise : a^(2)-ac +xc - xa +6a - 6c

If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))], B=[(0,c,-b),(-c,0,a),(b,-a,0)] then AB=

If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))] and a^(2)+b^(2)+c^(2)=1 , then A^(2)=

Prove that: |-a^2 ab ac ba -b^2 bc ac bc c^2| =4a^2b^2c^2 .

If ∣ -a a^2 ab ac ab -b^2 bc ac bc -c^2 | = ka^2b^2c^2 , then k is equal to