Home
Class 12
MATHS
int e^(ax)sin bx*dx...

int e^(ax)sin bx*dx

Promotional Banner

Similar Questions

Explore conceptually related problems

If u=inte^(ax)cos bx dx and v=int e^(ax)sinbx dx , show that, (a^(2)+b^(2))(u^(2)+v^(2))=e^(2ax)

If u=inte^(ax)cos bx dx and v=int e^(ax)sinbx dx , show that, "tan"^(-1)(v)/(u)+"tan"^(-1)(b)/(a)=bx .

Evaluate the following integrals: int e^(ax) sin (bx+c)dx

Evalute : int e^(ax) sin (bx+c) dx , (a, b, c in R, b ne 0) on R.

If u=inte^(ax)sin " bx dx" and v=inte^(ax)cos " bx dx then "(u^(2)+v^(2))(a^(2)+b^(2))=

If u=inte^(ax)sin " bx dx" and v=inte^(ax)cos " bx dx then "(u^(2)+v^(2))(a^(2)+b^(2))=

If u=inte^(ax)sin " bx dx" and v=int^(e^(ax))cos " bx dx" ,then tan^(-1)((u)/(v))+tan^(-1)((b)/(a)) equals

If u=inte^(ax)sin " bx dx" and v=int(e^(ax))cos " bx dx" ,then tan^(-1)((u)/(v))+tan^(-1)((b)/(a)) equals

Evaluate: int e^(ax)sin(bx+c)dx

inte^(ax)sin(bx+c)dx