Home
Class 12
MATHS
[(C(x)=cos^(2)x-sin^(2)x-1)/(x^(2)+1)-1,...

[(C(x)=cos^(2)x-sin^(2)x-1)/(x^(2)+1)-1,x!=0" is continuous at "x=0],[(sqrt(x)+1)/(x),x=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x) = (cos^(2)x - sin^(2)x-1)/(sqrt(x^(2)+1)-1), x != 0 , is continuous at x = 0, then f(0) is equal to

If the function f(x) = (cos^(2)x - sin^(2)x-1)/(sqrt(x^(2)+1)-1), x != 0 , is continuous at x = 0, then f(0) is equal to

The value of f(0) so that f(x)=(cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+1)-1 is continuous at x=0 is

If quad f(x)={(cos^(2)x-s in^(2)x-1)/(sqrt(x^(2)+1)-1),quad x!=0k,quad x=0 is continuous at x=0, find k

if f(x)=(cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+1)-1),x!=0 and f(x)=k,x=0 is continuous at x=0 then k=

If f9x),={(cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+1)-1)x,!=0,x=0, is continuous at x=0, find k

(xtendsto0)(cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+1)-1)

If f(x)={(cos^2x-sin^2x-1)/(sqrt(x^2+1)-1), x!=0,and f(x)=k , x=0" is continuous at "x=0,"find " k

f(x) = (2x - sin^(-1))/(2x + tan^(-1) (x)) is continuous at x = 0 then f(0) =

If f(x)={((1-cos kx)/(x sin x),x!=0),((1)/(2),x=0)} is continuous at x=0, find k,((1)/(2),x=0)}