Home
Class 12
MATHS
सिद्ध करे कि costan^(-1)sincot^(-1)x...

सिद्ध करे कि

`costan^(-1)sincot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that costan^(-1)sincot^(-1)x=sqrt((x^2+1)/(x^2+2))

Prove that costan^(-1)sincot^(-1)x=sqrt((x^2+1)/(x^2+2))

Prove that costan^(-1)sincot^(-1)x=sqrt((x^2+1)/(x^2+2))

Prove that costan^(-1)sin cot^(-1)x=sqrt((x^2+1)/(x^2+2))

f(x)=sin{cot^(-1)(x+1)}-cos(tan^(-1)x), a=costan^(-1)sincot^(-1)x, b=cos(2cos^(-1)x+sin^(-1)x) If a^(2)=26//51," then "b^(2)=

sincot^-1 costan^-1 2 =

The expression 1/(sqrt(2)){(sincot^(- 1)costan^(- 1)t)/(costan^(- 1)sincot^(- 1)sqrt(2)t)}*{sqrt((1+2t^2)/(2+t^2))} can take the value

f(x)=sin{cot^(-1)(x+1)}-cos(tan^(-1)x), a=costan^(-1)sincot^(-1)x, b=cos(2cos^(-1)x+sin^(-1)x) If f(x)=0 then a^(2)=

Simplify sincot^(-1)tancos^(-1)x

The value of cos [ tan^-1 {sin (cot^-1 (x))}] is a) sqrt((x^2+1)/(x^2-1)) b) sqrt((1-x^2)/(x^2+2)) c) sqrt((1-x^2)/(1+x^2)) d) sqrt((x^2+1)/(x^2+2))