Home
Class 12
MATHS
If (1+x)^n=C0+C1x+C2x^2+…+Cnx^n show tha...

If `(1+x)^n=C_0+C_1x+C_2x^2+…+C_nx^n` show that `C_1-2C_2+3C_3-4C_4+…+(-1)^(n-1) n.C_n=0 where C_r=^nC_r`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^n=C_0+C_1x+C_2x^2+…..+C_nx^n .then show that C_1+2C_2+…. nC_n=n.2^(n-1) .

If (1+x)^n = C_0 +C_1x+C_2x^2+……… +C_nx^n , then prove that : C_1 -2C_2+………….+(-1)^(n-1)nC_n =0

If (1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n , show that C_1/2+C_3/4+C_5/6+………..= (2^n-1)/(n+1)

If (1+x)^n=C_0+C_1x+C_2x^2+ _____+C_nx^n, Prove that, C_1+2C_2+3C_3+_____+nC_n=n.2^(n-1) .

If (1+x)^n=c_0+C_1x+C_2x^2++C_n x^n , using derivtives prove t h a t C_1-2C_2+3C_3++(-1)^(n-1)nC_n=0

If (1+x)^n=c_0+C_1x+C_2x^2++C_n x^n , using derivtives prove t h a t C_1-2C_2+3C_3++(-1)^(n-1)nC_n=0

If (1+x)^n=C_0+C_1x+C_2x^2+_____+C_nx^n , prove that C_1+2C_2+3C_3+_____+ ^nC_n=n2^(n-1)

If (1+x)^n = C_0 + C_1 x+ C_2 x^2 + ….....+ C_n x^n, then C_0+2. C_1 +3. C_2 +….+(n+1) . C_n=

If (1+x)^n = C_0 + C_1x + C_2x^2 + ………. + C_n x^n , prove that : C_0 + 2C_1 + ….. + 2 ""^nC_n = 3^n